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Connections between Abstract Quantum Theory and
Space-Time-Structure. III. Vacuum Structure and
Black Holes
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Quantum-theoretic considerations for the ground state of a black hole
result in a change of its interior solution. It is shown hat the interior of
a Schwarzschild black hole can be modelled by an ur-theoretically
described Robertson-Walker space-time. Thereby the Schwarzschild
singularity is changed into a Friedman singularity.

1. INTRODUCTON

One expects that an appropriate unification of quantum theory and
gravitation theory should lead to an explanation of the observed smallness
of the cosmological constant and to a better understanding of the space-
time singularities of classical general relativity. We do not think that one
should try to avoid or even remove space-time singularities in quantized
gravity; we rather take singularities as precious hints to look for a new type
of unification. The usual attempts to construct a union of quantum theory
and gravity are applications of quantization procedures to gravitation
theory retaining the space-time continuum even at very small distances.

In this paper we do not presuppose a space-time continuum first but start
with abstract quantum theory, i.e., the quantum theory of binary
alternatives (Drieschner ef al, 1987; Gornitz, 1988 a, b). Space-time is
introduced via the invariance group of the ,ur," the quantized binary
alternative. This invariance group turns out to be U(2).
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The time development is given by the subgroup U(I) and for the
symmetric space representing position space we have

UR)/ud) =sue) = §°

[for details see Gornitz (1988a)]. Taking this as a model for cosmic space
where the evolution of this cosmos is described by a growing number of
urs, we get a Robertson-Walker space-time (with £ =+17) with the right
order of an effective cosmological constant being a consequence of this
model (Gornitz, 1988b).

Now let us consider a black hole. Assigning an entropy to the black hole
(Bekenstein, 1973, 1974) led to the problem that one must also assign a
temperature, i.e., the black hole had to radiate, which is absolutely
forbidden by the classical theory. The resolution of this difficulty was
given by Hawking (1975), showing that quantum effects cause black holes
to create and emit particles, i.e., application of quantum theory led to
reasonable results for the exterior region of the black hole.

Here we want to employ quantum-theoretic considerations for the
interior solution. But how can we model an interior black hole solution
taking quantum effects into account?

The central point for quantum theory is the existence of a ground state
and its dependence on the system's extension. The horizon of a black hole
defines an informational closed volume, i.e., a finite volume where no
information about its internal states can be obtained outside. The ground
state of such an ideal box has to depend on the radius of the event horizon.
Another informational closed volume is a Robertson-Walker universe with
k=+1. We show now that the interior of a Schwarzschild black hole can be
modelled by an ur-theoretically described Robertson-Walker space-time.

2. THE ENERGY-MOMENTUM TENSOR

We assume that the quantized binary alternatives, the urs, behave like a
perfect fluid with energy-momentum tensor

(u;yTab:(P+P)Uaub-Pgab (l)

where p is the energy density of the ur-fluid, u, the normalized four-
velocity vector, and the pressure is given by

p=-p/3 (2)

A derivation of this relation between energy density and pressure is given
in Gornitz (1988 a, b).
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We take p> 0, i. e., the pressure becomes negative. Usually one does not
like negative pressures in physics. Nevertheless, a negative pressure is not
unknown; it may occur for example in certain nonequilibrium states. In
general relativity, the pressure contributes to the gravitational force, which
in the case of negative pressure leads to the effects of a repulsive
contribution to the gravitational force. Actually some models which try to
solve the horizon problem of the early universe use a negative pressure

pvac = - pvac

associated with the cosmological constant as the energy density of the
vacuum to derive inflation (see, e.g., Guth 1981; Albrecht and Steinhard,
1982; Linde, 1982; Weinberg, 1988).

We want to show now that our negative pressure of equation (2) stays
within the limits set by all relevant energy conditions in general relativity.

The weak energy condition states that the energy as measured by any
observer is nonnegative. Every physically reasonable energy-momentum
tensor is diagonalizable. Written in an orthonormal basis, the three principal
pressures p coincide for uniform pressure and the eigenvalue p represents
the rest energy density. In this case, the weak energy condition is equivalent
to

p=0 and ptp>0 3)

The strong energy condition which limits the stresses and guarantees the
existence of singularities is equivalent to

p+3p>0 and p+p>0 4)

Finally, the dominant energy condition, which states that the velocity of
the energy flow is always less than the speed of light, is equivalent to

p=1pl (%)

As is easily seen, (2) fulfils all these energy conditions. It is interesting
to notice that this negative pressure is the maximal negative pressure to
obey the strong energy condition and is somehow just the opposite of
radiation with

p=p/3
The energy-momentum-density of the vacuum acts like a cosmological

constant. Let us therefore decompose ()T into a sum of energy-
momentum tensors for matter, radiation, and vacuum:

(ur)Tab = (malter)Tab + (radiation)Tab + (vacuum)Tab (6)



654 Abstract Quantum theory and Space-Time Structure

where
P (matter)
(matter)Tah = 0 (7)
0
0
P (light)
(radiation)Tab = - p(lighl)/3 (8)
= P (iighy/3
= P (iighy/3
A
(vacuum) Tab = A (9)
A
A

3. THE METRIC

We want to construct now an interior Schwarzschild solution with
energy-momentum tensor ()7, as given by (1) and (2).
We start with the most general form of a spherically symmetric metric

ds’ =& d’ - B dr’ - (A& +sin*0dd) (10)

where
A=A(rt), B=B(t)

By Birkhoff’s theorem, a spherically symmetric vacuum solution has to
be static, 1.e., has to be the Schwarzschild solution. Therefore, we have to
choose

A(rt) = (1/2) In (I - Ryr) (11a)
B(r,t) =-(1/2) In (1 - Ryr) (11b)

with R; as a constant, which leads to the Schwarzschild metric
ds’ = (I-Ry/r) df’ - [(1-R/r)" di’ + P& +sin’0dd)] (12)

for Ry<r<oo

For the interior solution, we take
A(rt) =0 (13a)
B(r,t) =-(1/2)In (I - /RS) (13b)
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i.€., the line element
ds’ =dtf’ - [(1 - P/RS)dr’ + F(d& +sin’0dg)]
for 0 <r <Ry
Einstein's field equations
Gap = - K Tap

with the energy-momentum tensor of a perfect fluid lead to

G’y =-Kp G%=kpds (a,p=1223)
and with (14) to
0= 3/(xRS), p=-1/(xR)
The total mass is computed as
R
2M=x | pridr=R,
0

1.e., R, is actually the Schwarzschild radius.
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(14)

(15)

(16)

(17)

(18)

To join the interior and exterior solutions together, one normally
demands that the kinetic pressure is zero on the surface of the fluid ball.
Actually, a match could not be achieved for an interior of uniform and
nonzero positive pressure and uniform energy density, because the infinite
surface pressure gradient would blow off the outer layers of the fluid and
send a rarefaction wave propagating inward, thereby destroying the

uniform distribution.

In our model the uniform pressure is negative and not zero on the
surface. But in this case it results from contributions of the energy density
of the vacuum, which acts like an effective cosmological constant, i.e., for

A==
equations (6) - (9) yield
fGab + effAGab = - K [(matier)Tap + (radiationyTab |
If we apply the coordinate transformation
r'=r/R;,
to the line element (14), we get

ds’ =df’ - RS [(1 - r*)dr” + r?(d@ +sin’0dg)]

(19)

(20)

21

(22)

a stationary Robertson-Walker solution, i.e., an Einstein cosmos with

curvature radius R;.
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The stationarity of this solution is closely connected with requirement (2)
for (T, Taking a general Robertson-Walker metric (k = +1)

ds’ = df’ - a@)’ [(1 - )" dr + P A6 +sir" 0d§)] (23)

the field equations with the energy-momentum tensor of a perfect fluid give

K(p +3p) =-6di(t) /a(t) (24)
This implies
a) =0 iff p=-p/3 (25)
1.e.,
a(t) = a(0) + vt (26)

with v as constant expansion velocity.

4. DISCUSSION

The standard Schwarzschild solution has an implicit supposition that the
formation of a horizon has no influence on the structure of the vacuum.
This is a natural assumption in the framework of general relativity. But
from a quantum-theoretic point of view, the formation of a horizon (like
any enclosure) should show a back reaction on the quantum ground state.
In our model we take this into consideration via the introduction of a
negative pressure associated with the vacuum energy density. With this
assumption, the interior of a Schwarzschild black hole can be described by
a complete stationary Robertson-Walker space-time, i.e., replacing the
Schwarzschild singularity by a Friedmann singularity.

As Penrose (1982) conjectured, principles other than the ones we use
already in physics should come into play at a singularity, bringing along
with them the time-asymmetric character necessary to explain the second
law of thermodynamics. In our model, time asymmetry is actually built in.
It is one of the fundamental postulates of abstract quantum theory, and
therefore for the theory of quantized binary alternatives. We take this as a
hint that the so-called singularity problem may in fact be a problem of
understanding the concept of time.
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