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Quantum-theoretic considerations for the ground state of a black hole 
result in a change of its interior solution. lt is shown hat the interior of 
a Schwarzschild black hole can be modelled by an ur-theoretically 
described Robertson-Walker space-time. Thereby the Schwarzschild 
singularity is changed into a Friedman singularity. 

 
 
 
 
 
1. INTRODUCTON 
 
 One expects that an appropriate unification of quantum theory and 
gravitation theory should lead to an explanation of the observed smallness 
of the cosmological constant and to a better understanding of the space-
time singularities of classical general relativity. We do not think that one 
should try to avoid or even remove space-time singularities in quantized 
gravity; we rather take singularities as precious hints to look for a new type 
of unification. The usual attempts to construct a union of quantum theory 
and gravity are applications of quantization procedures to gravitation 
theory retaining the space-time continuum even at very small distances. 
 In this paper we do not presuppose a space-time continuum first but start 
with abstract quantum theory, i.e., the quantum theory of binary 
alternatives (Drieschner et al., 1987; Görnitz, 1988 a, b). Space-time is 
introduced via the invariance group of the „ur," the quantized binary 
alternative. This invariance group turns out to be U(2). 
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 The time development is given by the subgroup U(1) and for the 
symmetric space representing position space we have 
 

U(2) / U(1) = SU(2) = S3 
 
[for details see Görnitz (1988a)]. Taking this as a model for cosmic space 
where the evolution of this cosmos is described by a growing number of 
urs, we get a Robertson-Walker space-time (with k =+1) with the right 
order of an effective cosmological constant being a consequence of this 
model (Görnitz, 1988b). 
 Now let us consider a black hole. Assigning an entropy to the black hole 
(Bekenstein, 1973, 1974) led to the problem that one must also assign a 
temperature, i.e., the black hole had to radiate, which is absolutely 
forbidden by the classical theory. The resolution of this difficulty was 
given by Hawking (1975), showing that quantum effects cause black holes 
to create and emit particles, i.e., application of quantum theory led to 
reasonable results for the exterior region of the black hole. 
 Here we want to employ quantum-theoretic considerations for the 
interior solution. But how can we model an interior black hole solution 
taking quantum effects into account? 
 The central point for quantum theory is the existence of a ground state 
and its dependence on the system's extension. The horizon of a black hole 
defines an informational closed volume, i.e., a finite volume where no 
information about its internal states can be obtained outside. The ground 
state of such an ideal box has to depend on the radius of the event horizon. 
Another informational closed volume is a Robertson-Walker universe with 
k=+1. We show now that the interior of a Schwarzschild black hole can be 
modelled by an ur-theoretically described Robertson-Walker space-time. 
 
 
2. THE ENERGY-MOMENTUM TENSOR 
 
 We assume that the quantized binary alternatives, the urs, behave like a 
perfect fluid with energy-momentum tensor 
 
   (ur)Tab = (ρ + p ) ua ub - p gab   (1) 
 
where ρ is the energy density of the ur-fluid, ua the normalized four-
velocity vector, and the pressure is given by 
 
    p = - ρ / 3  (2) 
 
A derivation of this relation between energy density and pressure is given 
in Görnitz (1988 a, b). 
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We take ρ ≥ 0, i. e., the pressure becomes negative. Usually one does not 
like negative pressures in physics. Nevertheless, a negative pressure is not 
unknown; it may occur for example in certain nonequilibrium states. In 
general relativity, the pressure contributes to the gravitational force, which 
in the case of negative pressure leads to the effects of a repulsive 
contribution to the gravitational force. Actually some models which try to 
solve the horizon problem of the early universe use a negative pressure 
 
    pvac = – ρvac   
 
associated with the cosmological constant as the energy density of the 
vacuum to derive inflation (see, e.g., Guth 1981; Albrecht and Steinhard, 
1982; Linde, 1982; Weinberg, 1988). 
 We want to show now that our negative pressure of equation (2) stays 
within the limits set by all relevant energy conditions in general relativity. 
 The weak energy condition states that the energy as measured by any 
observer is nonnegative. Every physically reasonable energy-momentum 
tensor is diagonalizable. Written in an orthonormal basis, the three principal 
pressures p coincide for uniform pressure and the eigenvalue ρ represents 
the rest energy density. In this case, the weak energy condition is equivalent 
to 
 
  ρ ≥ 0 and ρ + p ≥ 0   (3)  
 
 The strong energy condition which limits the stresses and guarantees the 
existence of singularities is equivalent to 
 
  ρ + 3p ≥ 0 and ρ + p ≥ 0   (4) 
 
 Finally, the dominant energy condition, which states that the velocity of 
the energy flow is always less than the speed of light, is equivalent to 
 
   ρ  ≥ |p |   (5) 
 
 As is easily seen, (2) fulfils all these energy conditions. It is interesting 
to notice that this negative pressure is the maximal negative pressure to 
obey the strong energy condition and is somehow just the opposite of 
radiation with  

p = ρ / 3  
 The energy-momentum-density of the vacuum acts like a cosmological 
constant. Let us therefore decompose (ur)Tab into a sum of energy-
momentum tensors for matter, radiation, and vacuum: 
 

   (ur)Tab = (matter)Tab + (radiation)Tab + (vacuum)Tab (6) 
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where   
 
   ρ (matter)     
    (matter)Tab =   0    (7) 
     0   
      0  
 
    ρ (light)     
 (radiation)Tab =  - ρ (light)/3    (8) 
     − ρ (light)/3   
      − ρ (light)/3  
 
 
   λ      
  (vacuum)Tab =   λ     (9) 
    λ   
     λ  
 
 
3. THE METRIC 
 
 We want to construct now an interior Schwarzschild solution with 
energy-momentum tensor (ur)Tab as given by (1) and (2). 
 We start with the most general form of a spherically symmetric metric 
 
   ds2  = e2A dt2 - e2B dr2 - r2(dθ2+ sin2θ dφ2) (10)  
 
where 
   A = A(r,t),   B = B(r,t)  
 
 By Birkhoff’s theorem, a spherically symmetric vacuum solution has to 
be static, i.e., has to be the Schwarzschild solution. Therefore, we have to 
choose 
 
   A(r,t) =   (1/2) ln (1 - Rs/r)   (11a) 
 
   B(r,t) = - (1/2) ln (1 - Rs/r)  (11b)  
with Rs as a constant, which leads to the Schwarzschild metric  
  ds2 = (1-Rs/r) dt2 - [(1-Rs/r)-1 dr2 + r2(dθ2 + sin2θ dφ2)] (12)   
     for  Rs < r < ∞  
For the interior solution, we take  
  A(r,t) = 0   (13a)  
   B(r,t) = - (1/2) ln (1 - r2 / Rs

2)   (13b) 
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 i.e., the line element 

 
    ds2 = dt2 - [(1 - r2/Rs

2)-1dr2 + r2(dθ2 + sin2θ dφ2)] (14)  
   for  0 < r < Rs 
 
 Einstein's field equations 
 
   Gab = - κ Tab   (15) 
 
 with the energy-momentum tensor of a perfect fluid lead to  
  G0

0 = - κρ Gα
β = κ p δα

β (α, β = 1, 2, 3) (16)  
and with (14) to  
  ρ = 3/(κRs

2),   p = - 1/(κRs
2)   (17)  

 The total mass is computed as  
    Rs   
   2M = κ ∫   ρ r2 dr =Rs  (18) 
    0    
i.e., Rs is actually the Schwarzschild radius. 
 To join the interior and exterior solutions together, one normally 
demands that the kinetic pressure is zero on the surface of the fluid ball. 
Actually, a match could not be achieved for an interior of uniform and 
nonzero positive pressure and uniform energy density, because the infinite 
surface pressure gradient would blow off the outer layers of the fluid and 
send a rarefaction wave propagating inward, thereby destroying the 
uniform distribution. 
 In our model the uniform pressure is negative and not zero on the 
surface. But in this case it results from contributions of the energy density 
of the vacuum, which acts like an effective cosmological constant, i.e., for  
 effΛ = - λ  (19)  
equations (6) - (9) yield  
  effGab + effΛgab = - κ [(matter)Tab + (radiation)Tab ] (20)  
 If we apply the coordinate transformation  
    r' = r / Rs, (21)  
to the line element (14), we get  
 ds2 = dt2 - Rs

2 [(1 - r'2)-1dr'2 + r'2(dθ2 + sin2θ dφ2)] (22) 
  
a stationary Robertson-Walker solution, i.e., an Einstein cosmos with 
curvature radius Rs. 
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The stationarity of this solution is closely connected with requirement (2) 
for (ur)Tab. Taking a general Robertson-Walker metric (k = +1) 
 
 ds2 = dt2 - a(t)2 [(1 - r2)-1dr2 + r2(dθ2 + sin2θ dφ2)] (23) 
 
the field equations with the energy-momentum tensor of a perfect fluid give 
 
   κ(ρ + 3p) = - 6 ä(t) / a(t) (24)  
This implies 
    ä(t) = 0 iff   p = - ρ / 3  (25)  
i.e.,  
  a(t) = a(0) + vt (26) 
 
with v as constant expansion velocity.  
 
4. DISCUSSION 
 
 The standard Schwarzschild solution has an implicit supposition that the 
formation of a horizon has no influence on the structure of the vacuum. 
This is a natural assumption in the framework of general relativity. But 
from a quantum-theoretic point of view, the formation of a horizon (like 
any enclosure) should show a back reaction on the quantum ground state. 
In our model we take this into consideration via the introduction of a 
negative pressure associated with the vacuum energy density. With this 
assumption, the interior of a Schwarzschild black hole can be described by 
a complete stationary Robertson-Walker space-time, i.e., replacing the 
Schwarzschild singularity by a Friedmann singularity. 
 As Penrose (1982) conjectured, principles other than the ones we use 
already in physics should come into play at a singularity, bringing along 
with them the time-asymmetric character necessary to explain the second 
law of thermodynamics. In our model, time asymmetry is actually built in. 
It is one of the fundamental postulates of abstract quantum theory, and 
therefore for the theory of quantized binary alternatives. We take this as a 
hint that the so-called singularity problem may in fact be a problem of 
understanding the concept of time. 
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